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The vortex shedding in the wake behind linearly tapered circular cylinders has been considered
for the two taper ratios 75:1 and 100:1. The Reynolds number based on the velocity of the
incoming #ow and the largest diameter was in the range from 130 to 180. The low Reynolds
number assured that laminar #ow prevailed in the entire #ow "eld. The full unsteady three-
dimensional Navier}Stokes equations were solved numerically with the view of exploring the
rather complex vortex shedding phenomena caused by the variation of the natural shedding
frequency along the span of the cylinder. The accurate computer simulations showed that this
variation gave rise to discrete shedding cells, each with its own characteristic frequency and
inclined with respect to the axis of the cylinder. Flow visualizations revealed that vortex
dislocation and splitting took place in the numerically simulated #ow "elds. The computer
simulations compared surprisingly well with the extensive laboratory experiments reported by
Piccirillo & Van Atta in 1993 for a range of comparable conditions; this has enabled detailed
analyses of other #ow variables (notably pressure and vorticity) than those readily accessible in
a physical experiment. However, distinct di!erences in the vortex dynamics are observed in
some of the cases. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

THE POTENTIALLY SEVERE CONSEQUENCES of vortex shedding behind blu! bodies was a com-
pletely unknown phenomenon among most civil engineers until the collapse of Tacoma
bridge some 50 years ago. Today, the vortex dynamics in wakes behind geometrically
simple objects are quite well understood as long as the shedding is nominally two-dimen-
sional (2-D); see the excellent review by Williamson (1996). Three-dimensional (3-D) vortex
shedding is by far more complex from a physical point of view and therefore relatively less
well understood. 3-D wake phenomena may for example occur behind circular cylinders if
;/D varies along the span of the cylinder, i.e., if either (or both) the cylinder diameter D or
the incoming velocity; changes. A geometrically simple con"guration, and yet one of great
practical relevance (e.g., chimneys and oil-platform legs), is the uniform #ow past a linearly
tapered circular cylinder, of which a slender cone represents a special case. Following the
pioneering experimental studies by Gaster (1969, 1971), in-depth laboratory investigations
�This paper is based on an oral presentation at the IUTAM Symposium on Blu! Body Wakes and Vortex-
duced Vibrations held in Carry-le-Rouet outside Marseille, France 13}16 June, 2000.
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of vortex shedding behind tapered cylinders were performed by Piccirillo & Van Atta
(1993), and Papangelou (1992) for the special case of cones, and more recently by Hsiao
& Chiang (1998).

Until recently, the majority of investigations of 3-D vortex shedding were performed in
the laboratory. Computer simulations, which require accurate solutions of the time-depen-
dent 3-D Navier}Stokes equations, have only become feasible in the last decade, e.g.,
Jespersen & Levit (1991). The objective of the present study is to perform detailed computer
simulations of the 3-D laminar vortex shedding behind a linearly tapered cylinder with
a two-fold aim: (i) to demonstrate how closely the experimental "ndings of Piccirillo & Van
Atta (1993) can be reproduced numerically; and (ii) to explore the simulated #ow "elds with
the view to provide details of the complex shedding pattern not readily available in
a laboratory experiment. First, however, a brief summary of the most striking vortex
shedding phenomena is provided.

2. VORTEX SHEDDING PHENOMENA

The vortex shedding behind a straight circular cylinder in a uniform incoming #ow is
a classical example of naturally occurring unsteadiness in #uid dynamics. Following
Roshko in 1954, numerous authors have contributed experimentally, theoretically and
numerically to the understanding of intricate and fascinating phenomena such as vortex
shedding, vortex splitting, oblique versus parallel shedding, and the occurrence of #ow
instabilities (Modes A and B) in the transition-to-turbulence process; see Williamson (1996)
for details. For example, a subject of controversy has been the origin of discontinuities in the
Strouhal}Reynolds number relationship in the laminar shedding regime (Gaster 1969, 1971;
and Tritton 1959, 1971). Williamson (1988) showed that in the parallel shedding regime, the
Strouhal}Reynolds number curve was completely continuous. Moreover, the experimental
oblique-shedding data closely collapsed onto the parallel-shedding curve, de"ning a univer-
sal Strouhal}Reynolds number curve:
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where A"!3)3265, B"0)1816 and C"1)600�10��, and the Reynolds number is
de"ned as Re";D/�, with � the kinematic viscosity of the #uid. Similarly the Strouhal
number, which is a dimensionless frequency parameter, can be de"ned as St"f D/;, where
f denotes the vortex shedding frequency. Williamson & Brown (1998) showed that a more
accurate St}Re relationship could be given by
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where A"0)2850, B"!1)3897 and C"1)8061. According to Williamson & Brown
(1998), equation (2) with this set of coe$cients is &&distinctly more accurate than existing
traditional "ts''.

Next, in order to investigate a somewhat more complex problem, two variants can be
studied: a change in incoming #ow (even if the uniformity assumption can often be made, in
reality this never happens), or a change in geometry (for industrial applications). The former
con"guration consists of an incoming linear shear #ow past a uniform circular cylinder; the
linear shear #ow means that the velocity u of the incoming stream varies linearly along the
z-axis which is the cylinder axis [see Figure 1(a)]. The latter case is that of a uniform
incoming #ow (;) past a tapered circular cylinder; the taper implies a constant change in



Figure 1. Sketch of: (a) linear shear #ow, (b) tapered cylinder.
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diameter d all along the span [see Figure 1(b)]. The former is characterized by a shear
parameter: �"(D/u

�
)(�u/�z), where D is the diameter of the circular cylinder and

u
�

denotes the average free-stream velocity. The latter is characterized by the taper ratio:
R

�
"l/(d

�
!d

�
), where l is the length of the cylinder, and d

�
and d

�
denote the diameters of

the wide and narrow ends of the cylinder, respectively. The two #ow con"gurations depicted
in Figure (1) may at "rst sight appear fundamentally di!erent. However, the observed
vortex shedding phenomena turn out to be quite similar [see the review on vortex shedding
from blu! bodies in shear #ow by Gri$n (1985)]. Indeed, by assuming that the same #uid is
considered in both cases and that u

�
";, the relation �"1/R

�
is easily obtained, thereby

justifying at least qualitative comparisons. This suggests the alternative de"nition
(d

�
!d

�
)/l for the taper ratio.

Nevertheless, an important distinction between the linear shear #ow and the uniform
#ow past a tapered cylinder should be pointed out. In the former case, the local stagnation
pressure varies essentially proportionally to u�, as does the base pressure along the lee side;
see, e.g., Zdravkovich (1997). The associated pressure gradients along the span give rise to
a pressure-driven secondary #ow along the stagnation line from the high-velocity end
towards the low-velocity end, and an oppositely directed #ow along the lee side of the
cylinder. In the tapered case, on the other hand, the stagnation pressure and the base
pressure are practically constant along the span and no such secondary motions are set up.

Another particularly attractive feature of the #ow over a tapered cylinder is that end
e!ects can be completely eliminated by proper choice of boundary conditions in the
spanwise direction. This contrasts with the linear shear #ow case, in which the in#uence of
end conditions cannot be avoided (Mukhopadhyay et al. 1999), as shown in the investiga-
tion of end e!ects by Mair & Stansby (1975). This motivates the present computer
experiments on #ow phenomena in the wake behind a tapered straight circular cylinder in
an originally uniform stream.

Three main features of the vortex dynamics in tapered cylinder wakes should be noted:
the characteristic cell pattern, the oblique shedding angle, and vortex dislocation (William-
son 1989) or vortex splitting (Eisenlohr & Eckelmann 1989). Since the earliest work of
Gaster (1969), the vortex-cell shedding has been proved to be an important characteristic of
the vortex dynamics in the wake of a tapered cylinder (Noack et al. 1991) and sometimes
also of the wake behind a nontapered straight cylinder (Williamson 1996). Piccirillo & Van
Atta (1993) showed that the tapered cylinder span could be divided into a certain number of
cells. Each cell was characterized by its own constant vortex shedding frequency. This
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means that two neighbouring cells have shedding frequencies di!erent from each other.
Moreover, the size of the cells could be determined by the variation of the vortex shedding
frequency along the spanwise direction: a sudden change in frequency indicated a change of
cell.

After many years of controversy, it was pointed out by Williamson (1989) that the oblique
shedding behind nontapered straight circular cylinders was caused by end e!ects, i.e., by
disturbances originating from one end being propagated along the span from one shed
vortex to another. For the tapered cylinders, on the contrary, it has been found by Piccirillo
& Van Atta (1993) that the vortex shedding pattern was practically una!ected by end
conditions. Hence, it seems that the oblique vortex shedding phenomenon of the tapered
cylinders has a pure geometric origin. Piccirillo & Van Atta (1993) noticed that the bending
of the vortex lines and the vortex splitting phenomenon were linked. Vortex splitting is said
to occur when vortex lines of one core split apart to merge into the o!set cores of
neighbouring vortices (Eisenlohr & Eckelmann 1989). The angle between the shed vortices
and the cylinder axis was observed to increase from 5 to 253, before vortex splitting
occurred. During each split, the vortex lines far away continue to steepen (up to 503). After
the split, the vortex lines again become continuous and slightly inclined with respect to the
cylinder axis. Piccirillo & Van Atta moreover noticed that this bending of the vortex lines
around the vortex split leads to a decrease in the local frequency of vortex shedding.

3. COMPUTATIONAL APPROACH

Piccirillo & Van Atta (1993) considered laminar vortex shedding behind four di!erent
circular cylinders with di!erent taper ratios. In this paper, computer simulations are
reported for three di!erent cases, namely their Run 14 with R

�
"100:1, called Case A, and

their Runs 22 and 23 with R
�

"75:1, called Cases B and C, respectively, see Table 1 for
further details.

Each tapered cylinder was embedded in a 3-D computational mesh with 256 000 points.
Based on the results of previous 2-D simulations (Vallès et al. 2001), this mesh size was
found to be the best compromise between cpu-time consumption, storage requirements and
resolution. The mesh was divided into 28 blocks. The cross-sectional view in Figure 2 shows
how: six "ne blocks form a ring surrounding the cylinder with eight coarser blocks outside
the "rst ring in the x}y plane (cylinder cross-section). Two subdivisions were made in the
z-direction, i.e., along the cylinder axis.

The parallelized Navier}Stokes solver concurrent block Jacobi (CBJ) adopted here is
a parallel implicit multiblock time-accurate Navier}Stokes solver, with a coarse-grid
correction scheme (CGCS). The CBJ code has been extensively tested and used by Jenssen
(1994) and Jenssen & Weinerfelt (1995, 1998) to compute both steady and unsteady #ow
TABLE 1
Computer simulations

Case R
�

l/d
�

d
�

/d
�

d
�

/d
�

Re
��

� Run

A 100:1 37)473 0)625 0)707 178 14

B 75:1 33)461 0)556 0)631 131 22

C 75:1 33)461 0)556 0)631 163 23

� Re
��

";d
�

/�, i.e., Reynolds number based on the largest
diameter.



Figure 2. Three-dimensional mesh: view perpendicular to the axis of the cylinder. Left: complete view; right:
close-up.
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"elds. The full time-dependent Navier}Stokes equations, written in integral form, were
solved on the structured multiblock grid. The convective part of the #uxes was discretized
with a third-order, upwind-biased method based on Roe's scheme. The viscous #uxes were
obtained using central di!erencing. Derivatives of second-order accuracy are "rst cal-
culated with respect to the grid indices and then transformed to derivatives with respect to
the physical spatial coordinates. Implicit and second-order-accurate time-stepping was
achieved by a three-point, A-stable, linear multistep method:
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where the operator on the right-hand side denotes the sum of the #ux into volume<
�

of grid
cell i, �t is the time step, and n refers to the time level. To eliminate some of the end e!ects,
Neumann-type boundary conditions were imposed on the x!y planes at the two ends of
the cylinder.

The computations were performed on a Cray T3E. The CBJ code ran on eight processors,
each processor handled 32 000 points. The time step was "xed as 0)1d

�
/;, or about �

��
of the

shedding period. Each simulation was run for 500 time steps, i.e., roughly corresponding to
ten shedding cycles. The dimensionless convergence criterion for the Newton iteration was
0)001 with a maximum of 20 Newton iterations per time step. The total consumption of
cpu-time, after 500 time steps, was approximately 425 h, for both Cases A and B. This
implies an average consumption of 6 cpu s per grid point, whereas the wall-clock time for
each run was approximately 62 h. Thus, the use of eight processors in parallel on a Cray
T3E enabled each simulation to be completed 7 times faster than on a computer with only
a single processor.

4. RESULTS AND DISCUSSION

The cellular features of the vortex shedding can be visualized in di!erent ways.
Figure 3 gives the time evolution of the pressure "eld. The pressure values are taken on
a line, parallel to the cylinder axis, at x"2)5 d

�
and y"1 d

�
, where d

�
is the mean

diameter given in Table 1. This detection line was o!set 1d
�

from the cylinder centre-line in
order to detect only one side of the vortex street. The time-traces to the right in Figure
3 mimicked hot-wire outputs, and from these signals the vortex shedding frequencies at each
spanwise location were calculated. By considering the variation in frequency between two
neighbouring positions (cf. Section 2), in combination with both visualizations and anima-
tions of the #ow, the number of shedding cells was determined for each of the three cases.



Figure 4. Instantaneous #ow "eld: (a) Case A, (b) Case B and (c) Case C. At left, isopressure surface; at right,
spanwise vorticity.
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Instantaneous #ow "elds are shown in Figure 4. The characteristic cell pattern is clearly
visible, both in the isosurfaces of pressure (to the left) and in the isocontours of the spanwise
vorticity (to the right). When the end e!ects at the extremities of the cylinder are discarded,
as in the study of Piccirillo & Van Atta (1993), four distinct shedding cells can be identi"ed
in Figure 4 for Case B, i.e., fully in accordance with the number of cells seen in the
experiment. Although the positions of the cells were not completely "xed, the spanwise
locations of the cell centres could be estimated on the basis of the computer simulations.
These locations are shown versus local Strouhal number and local Reynolds number in



Figure 3. Time evolution of the pressure along the spanwise taken at x"2)5d
�
and y"1d

�
. From the top to

the bottom: Case A, Case B and Case C. At left, isopressure contours; at right, pressure values at selected spanwise
positions.
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Figure 7. Time sequence of the instantaneous spanwise vorticity showing vortex splitting for Case B. Time steps:
(a) 463, (b) 470, (c) 477, (d) 484, (e) 491, (f) 498.
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Figure 5. Cell mid-point locations for Case B (simulation), compared with experimental data from Piccirillo
& Van Atta (1993) (experiment), plotted (a) versus local Strouhal number, (b) versus local Reynolds number: �*�,

experiment; �*� , simulation.
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Figure 5 and compared with experimental data for Case B. The results of the computer
experiments and the laboratory experiments show the same overall tendency, and the close
correspondence between the local Reynolds numbers and the cell centre positions is
particularly encouraging.

The situation is somewhat di!erent for Case A, for which the time histories are shown at
the top of Figure 3 and instantaneous #ow "elds in Figure 4. This #ow "eld appears to be
more regular than the two others (Cases B and C), with the cell positions being gradually
shifted in the positive z direction, i.e., towards the narrow end of the cylinder. The same
observation was made by Piccirillo & Van Atta (1993), namely that the #ow "eld tends to be
more chaotic with increased tapering (i.e., for lower taper ratios R

�
). However, the isobars

reveal the existence of "ve distinct cells, in accordance with the observed shift in the vortex
shedding frequency, as deduced from the pressure time-histories. This latter "nding is in
con#ict with the three shedding cells observed in the laboratory experiment. Analogous
#ow visualizations for Case C are shown at the bottom of Figures 3 and 4. Careful
examination of the pressure contours to the left in Figure 3 suggests that a new cell is being
created after about 200 time steps about midway between the cylinder ends. Similarly, a new
cell is being formed after about 500 time steps. Altogether, four cells are visible at the same
time. The experiments suggested that new cells were created near the wide end of the
cylinder and gradually shifted towards the narrow end, just as in the present Case A. In Case
C, however, the cells formed near the wide end of the cylinder are only shifted spanwise to
about z/d

�
"15.

A decade ago, Jespersen & Levit (1991) conducted similar 3-D simulations for laminar
#ow past a tapered cylinder with taper ratio R

�
"100:1 in a Reynolds number range from

90 to 145, i.e., somewhat lower than those considered in the present work. Their computa-
tions were performed on the massively parallel Connection machine with an implicit,
approximate-factorization central-di!erence code for the full Navier}Stokes equations in
generalized curvilinear coordinates and with a three-point implicit second-order time-
stepping method.

Their results showed the same qualitative #ow behaviour as the experiments of Piccirillo
& Van Atta (1993) (i.e., velocity}time trace, vortex shedding), but some quantitative
comparisons di!ered, such as the number of shedding vortex cells. An interesting result is
that they got "ve cells, i.e., the same as in the present simulation.



Figure 6. Local Strouhal number (St) versus local Reynolds number (Re). Cases A, B and C refer to the present
simulations �*�, Case A; �*� , Case B; �*�, Case C; , Williamson (1988); �*�, Piccirillo & Van Atta (1993);
}} } , Jespersen & Levit (1991). Jespersen & Levit's curve is for a simulation with R

�
"100:1. Piccirillo & Van

Atta's curve is a "tting of all results reported by them. Williamson's curve is the universal St}Re curve in equation
(1) for straight uniform circular cylinders.
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The reason why both computer simulations were unable to reproduce the laboratory
experiments in every detail is not clear. One explanation could be that the #ow past
a tapered circular cylinder with high taper ratio (R

�
"100:1) is more sensitive to end e!ects

at the extremities of the cylinder than in cases with lower R
�

. Indeed, tapered cylinders with
taper ratios in the range considered here and by Jespersen & Levit (1991) are not very
di!erent from a uniform cylinder, the latter for which Williamson (1989) found that the end
cells had a very strong e!ect on the main vortex shedding region. Moreover, Piccirillo
& Van Atta (1993) noticed that: `For the 100:1 cylinder with ;"0)5 cm/s the position of
the cell boundaries changed by up to 1)0 cm, when nominally identical runs were com-
pared.a Consequently, we ought to state the same conclusion as them, namely that `care
must be taken when using the cell boundary positions in quantitative analysisa. The same
behaviour was also described by Monkewitz (2000) during the recent IUTAM Symposium.
It is noticeable that in the study of linear shear #ow past straight uniform circular cylinders,
essentially the same #ow phenomena have been observed both experimentally by Mair
& Stansby (1975), Stansby (1976) and Gri$n (1985) and numerically by Mukhopadhyay
et al. (1999).

In order to provide further qualitative comparisons, St(Re) curves were plotted in
Figure 6. This "gure compares the Strouhal}Reynolds relationships deduced from the
present simulations with the results of the experiments by Piccirillo & Van Atta (1993). The
curve-"t they employed was given by the relation St

�
"0)195!5)0/Re, where St

�
is the

Strouhal number associated with an individual shedding vortex cell. The St(Re) relations
deduced from the simulations of Cases A and C are in good agreement with the experi-
mental curve along one half of the cylinders (the narrowest part), i.e., for Re below 150 for
Case A and below 115 for Case C, whereas the computations diverge from the experimental
results for higher Reynolds numbers. This is mainly due to the fact that the experimental
curve is a "t on Strouhal number values taken at the centre of each vortex cell only, whereas
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the present results are based on a truly local Strouhal number for each spanwise location.
The di!erence in spanwise boundary conditions in the experiment and the computations
may also explain some of the deviations. A comparison between the simulation conducted
by Jespersen & Levit (1991) with R

�
"100:1 and the present equivalent Case A in

Figure 6, shows that the present results "t quite well with the experimental curve, while
those of Jespersen & Levit (1991) are closer to the universal Strouhal}Reynolds number
curve for uniform (i.e., nontapered) cylinders of Williamson (1988). This discrepancy is most
likely due to the much coarser grid resolution used by Jespersen & Levit (1991). In
conclusion, the present computer simulations showed that the local Strouhal number for
tapered cylinders is lower than those for uniform cylinders at the same Reynolds number,
fully consistent with earlier observations [Gaster 1969; Piccirillo & Van Atta 1993].

The St(Re) relation for Case B, however, seems to be in poor agreement with the
experimental results. The only di!erence between the two simulations, Cases B and C, is the
Reynolds number based on the wide diameter; cf. Table 1. This modest di!erence apparent-
ly a!ects the results considerably. By comparing the spanwise vorticity "eld in planes
parallel to the axis of the cylinder in Figure 4 (c, right) and Figure 4 (b, right), a di!erence
near the narrow (upper) end of the cylinder can be observed. In Case B a vortex splitting can
be seen. In order to focus on this #ow phenomenon, Figure 7 shows a time sequence of the
vortex splitting. Considering positive spanwise vorticity (in white), a vortex shed approxim-
ately l/3 from the narrow end of the cylinder appears as three white spots in Figure 7(a). The
split begins from the `second spota: a part of the main core of the vortex is merging into
another vortex. Then, while the process evolves in time and space, carried away by the mean
#ow, the vortex lines surrounding the split seem to become more and more steep. In Figure
7(d), a second part of the main vortex splits to merge into the o!set of a second vortex
located behind the "rst one. Finally, in Figure 7(f) a new `maina vortex is shed from the
same location as the "rst one.

This vortex splitting phenomenon explains what could be seen near the top of the
pressure isocontours of Figure 3 (Case B). In the early stage of the process, four areas could
be seen until the narrow-end cell began to grow from time step 250, thereby reducing the
neighbouring shedding cell. Between time steps 250 and 300 only three cells could be seen.
Then from time step 300 to 425, a change occurred and four areas could again be observed,
probably due to a change of phase in the vortex shedding frequency. Finally, from time step
425 until the end of the process, the narrow-end cell considerably reduced its length and
a new cell appeared with its centre approximately located at the interface between the
previous cells.

Hence, the behaviour of the St(Re) relation in the Reynolds number range 95}125 for
Case B, i.e., the decrease in local Strouhal number while the local Reynolds number is
increasing, is believed to be due to the occurrence of the vortex splitting at the narrow end of
the cylinder. In fact, the simulation showed exactly the same phenomena associated with the
vortex splitting, as stated previously in Section 2, namely a decrease in the local vortex
shedding frequency together with a bending of the vortex lines around the vortex split.

In the recent CFD analysis by Mukhopadhyay et al. (1999), most of the vortex shedding
phenomena described above have been observed. Although they considered #ow past
a uniform cylinder, their linear variation of the incoming #ow u caused a spanwise variation
of u/D analogous to that in the present study. Their shear parameter � was equal to 0)02,
and according to the relation in Section 2 this corresponds to uniform #ow past a tapered
cylinder with R

�
"50:1. Because this taper ratio is quite di!erent from those in the present

study, no qualitative comparisons have been made. Nevertheless, their numerical results
compared well with experiments by Piccirillo & Van Atta (1993) for a tapered cylinder with
R

�
"50:1.
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5. CONCLUDING REMARKS

Accurate numerical solutions of the full time-dependent Navier}Stokes equations have
been performed in order to provide an in-depth exploration of the intricate vortex shedding
pattern in the wake of linearly tapered circular cylinders. The results for Cases A and
C showed an encouraging consistency with the observations made by Piccirillo & Van Atta
(1993). In particular, several important features of the oblique vortex shedding observed
experimentally were reproduced by the computer simulations. These include the spanwise
variation of the shedding frequency, which gives rise to discrete shedding cells, each with its
own shedding frequency. For the tapered cylinder with R

�
"75:1, the number of vortex

cells, as well as their inclination with respect to the axis of the cylinder, compared well with
the experiment. The instantaneous vorticity "elds mirrored the oblique vortex shedding
pattern, whereas the isopressure contours showed that four distinct vortex cells were shed
from the cylinder. Animations moreover revealed that the vortex shedding shifts along the
span of the cylinder, from the narrow to the wide end. The vortex splitting phenomenon
described by Piccirillo & Van Atta (1993) was observed to occur in the wake of the tapered
cylinder in Case B.

It is noteworthy that the match with the experiments is not uniformly good. For instance,
the variation of the Strouhal number along the span matches the experiments only in some
of the cases. In other cases, the physics of the computed #ow "eld is simply di!erent from
that of the laboratory #ow, and distinct di!erences in the vortex dynamics are observed for
the less tapered cylinders. Finally, striking similarities between uniform #ow past tapered
cylinders and linear shear #ow past uniform circular cylinders were pointed out.

The next step of this research programme would be to simulate the turbulent wake
phenomena for #ow past a tapered cylinder at higher Reynolds numbers, typically
3 900(Re(5 000, in order to enable comparisons with the experimental study of Hsiao
& Chiang (1998). This will be accomplished by means of large-eddy simulations, in which
parts of the turbulent #uctuations are accounted for by a sub-grid-scale model.
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